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Raw EEG

An EEG or ERP waveform can be decomposed into a set of
sinusoids of difference frequencies, phases, and amplitudes.

You could perfectly reproduce this entire waveform by
summing together a set of sinusoids.




Fourier Analysis
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ANY waveform, no matter how complex, can be recreated by summing together a set
of sinusoids. The Fourier transform tells you the amplitudes, phases, and frequencies
of the sinusoids you would need to reconstruct a given complex waveform.



Fourier Analysis

The Fourier transform shows the amplitudes and phases of the sinusoids that
we’d need to sum together to recreate our original ERP waveform.
(Phase is not usually shown.)
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Fourier Analysis

The inverse Fourier transform simply sums together the sinusoids shown in the
Frequency Domain plot to recreate the original Time Domain waveform.
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Fourier Analysis

Any time-domain waveform has a unique frequency-domain equivalent.

There is one and only one set of sinusoids that can perfectly recreate
the original waveform. You need only one amplitude and phase for
each frequency.
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Fundamental Principle #1

* Power at a frequency in a Fourier transform does not
mean that an oscillation was present at that frequency

* Power at a frequency means that a sinusoid at that
frequency, when added to other sinusoids at other
frequencies, can create an equivalent waveform

It does not mean that the biological signal consists of the sum
of these sinusoids




Fundamental Principle #1

NY time-domain waveform has a unique frequency-domain equivalent.

The fact that we have a certain amplitude at 8 Hz in the Fourier
transform doesn’t mean that there are 8 Hz oscillations in the ERP
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4 Classes of Filters

* |Low-pass filter
- Remove high frequencies, pass low frequencies
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4 Classes of Filters

* |Low-pass filter

- Remove high frequencies, pass low frequencies
* High-pass filter

- Remove low frequencies, pass high frequencies
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4 Classes of Filters

Low-pass filter

- Remove high frequencies, pass low frequencies
High-pass filter

- Remove low frequencies, pass high frequencies
Band-pass filter

- Remove low and high frequencies, pass intermediate band
- Same as sequential application of low-pass and high-pass filters

Notch filter
- Remove narrow band of frequencies (e.g., 50 Hz or 60 Hz)



Frequency Response Function

Proportion of signal at 4 59 -
each frequency that will Half-amplitude cutoff = 30 Hz

pass through the filter
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Gain: Multiplication factor for adjusting the amplitude of each frequency
Rolloff: Slope of the filter at its steepest point (dB/octave)



6 cycles in 100 ms =

60 cycles in 1000 ms
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Filters are a form of controlled distortion
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Flltermg Increases our preC|S|on in the frequency
domain by giving us a narrower band of frequencies.
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But when we increase our frequency-domain precision _
this way, we’re actually losing temporal resolution. g
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Fundamental Principle #2: Precision in the frequency
domain is inversely related to precision in the time domain




Low-pass filter distortion

Original Waveform Low-pass filters blur the onset and offset
times of the ERP waveform. In this

example of a 12 Hz low-pass filter, you can

Filtered Waveform see that the onset time is shifted leftward
and the offset time is shifted rightward.
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High-pass filter distortion

High-pass filters subtract out a blurred

Original Waveform : ot
version of the original waveform.

In this example of a 2.5 Hz high-pass
filter, you can see that the positive
peaks of the original waveform are

preceded and followed by artifactual

negative peaks in the filtered waveform.
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Sharp Rolloffs and Oscillations

Frequency Response Function Unfiltered and Filtered

_ Waveforms
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A frequency response function with a very steep slope induces artifactual

oscillations in the data.
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How inappropriate high-pass filters can produce artifactual
effects and incorrect conclusions in ERP studies
of language and cognition
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Recommendations

for cognitive research in adults
High-pass Low-pass

cutoff cutoff

Don’t worry < 0.1 Hz > 20 Hz

Worry a little | 0.1-0.5 Hz 10-20 Hz

Worry a lot* > 0.5 Hz < 10 Hz

*Especially when slope is > 12 dB/octave

When you’re reading an ERP paper, one of the first things you should look
at is the filter settings. If they’re in the red range, the filters may have
distorted the data so badly that the conclusions are invalid.
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Analyzing neural time series data
ANALYZING NEURAL TIME SERIES DATA

40+ hours of video lectures that supplement my book *Analyzing Neural Time

Series Analysis.*

Theory and Practice

WERSITE VERMIONM YOUTURE YARZION

Solved challenges in neural time series
analysis

This is & folow-up 10 the above course. Il presents additional and more
advanced material that will help you bring your neuroscience Sme series

analysss skills 10 the noxt level

LEARN MORE

http://mitpress.mit.edu/books/analyzing-

: : https://www.mikexcohen.com/#courses
neural-time-series-data




7 CHAPTER 3 :
St Beyond ERPs: Oscillatory Neuronal
prch 2 Dynamics
EMILY S,

KAPPENMAN

Marcel Bastiaansen, Ali Mazaheri, and Ole Jensen

=

Abstract

p The event-refated potential (ERP) approach has provided a wealth of fine-grained information

= " _F about the time course and the neural basis of cognitive processing events, However, in the 1980s

g P p and 1990s, an increasing number of researchers began to realize that an ERP only represents a certain
V part of the event-related electroencephalographic (EEG) signal. This chapter focuses on another aspect

p of event-refated EEG activity: oscillatory EEG activity. There exists a meaningful refationship between

= e oscillatory neuronal dynamics, on the one hand, and a wide range of cognitive processes, on the other
g hand. Given that the analysis of oscillatory dynamics extracts information from the EEG/
magnetoencephalographic (EEG/MEG) signal that is largely lost with the traditional time-locked

'l‘ h e () X f() l-d H an (l I)O 0 l\» ()/ averaging of single trials used in the ERP approach, studying the dynamic oscillatory patterns in the

__tﬁ.-

EEG/MEG is at least a useful addition to the traditional ERP approach.
EVENT-RELATED
TRk 4L\ o AW R DY i Keywords: ERP, oscillatory EEG activity, EEG oscillations, cognitive processes, oscillatory dynamics

POTENTIAL il
COMPONENTS

Bastiaansen, M., Mazaheri, A., & Jensen, O. (2012). Beyond ERPs: Oscillatory neuronal dynamics. In S. J. Luck &
E. S. Kappenman (Eds.), 7The Oxford Handbook of ERP Components (pp. 31-49). Oxford University Press.



Single-Trial EEG Epochs

1000 ms

Bastiaansen et al. (2012)

On each trial, the stimulus elicits two alpha-
band bursts. The first burst is phase-locked
to the stimulus. On every trial, we get
positive peaks at consistent times and
negative peaks at consistent times.

When we average the trials together, we
can see the alpha burst in the average, with
the same positive and negative peaks.

Average of
Single-Trial EEG Epochs

0 1000 ms



Single—TriaI EEG EpOChS Bastiaansen et al. (2012)

The second alpha burst doesn’t have a
consistent phase from trial to trial. Where we
have a positive peak in the first epoch, we have
a negative peak in the second, and no peak at
all in the third.

These oscillations therefore cancel out in the
average, which makes it look as if there was no
stimulus-related brain activity during this period.

Average of
Single-Trial EEG Epochs

pon A

1000 ms 0 1000 ms

»



Time-frequency analysis makes phase-random oscillations visible by
estimating the amplitude independent of the phase.

Fourier analysis tells us the amplitude at each frequency, independently of
the phase, but it gets rid of time.

Time-frequency analysis gives us a blend of time and frequency information.
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In time-frequency analysis, we give up some precision in time and
some precision in frequency so that we can have a little of each.
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Fundamental Principle #2: Precision in the frequency
domain is inversely related to precision in the time domain



Time-Frequency Analysis

Instead of using infinite-duration sine waves,
we reconstruct a time-domain waveform by

summing together a set of wavelets.

Each wavelet is created by taking the sine
wave and windowing it, often with a Gaussian

windowing function.

NAANAAAT

0 1:0 2:0 350 4:0 5:0
Frequency
We've lost some frequency
resolution. In the frequency
domain, the wavelet contains
a somewhat broad range of
frequencies around 10 Hz.
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Time-Frequency Analysis

You can see how a single-trial of our simulated EEG
data could be fit by combining a several 10 Hz wavelets.
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Single-Trial EEG Epochs Time-Frequency Transforms

The X axis represents time,
just as in the original EEG
epochs. But now the Y axis
represents frequency. The

color at each location in this

two-dimensional space
represents the magnitude of
a given frequency at a given
time.

0 Time 1000ms O Time 1000 ms



Single-Trial EEG Epochs Time-Frequency Transforms

Average of
Time-Frequency Transforms
40 Hz
30 Hz
20 Hz
10 Hz

Average of
Single-Trial EEG Epochs
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Fundamental Principle #1: Power at a frequency in a
time-frequency transform does not mean that an
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Rule of Thumb: In most cases, a broad band of power is
not a true oscillation, but a narrow band of power does
reflect a true oscillation
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Rule of Thumb: In most cases, a broad band of power is
not a true oscillation, but a narrow band of power does
reflect a true oscillation
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Alpha is also briefly suppressed following a task-relevant stimulus

Adrian & Matthews (1934)



Lateralized Suppression of Alpha-Band EEG Activity As a
Mechanism of Target Processing

Felix Bacigalupo'*** and “Steven J. Luck'

'‘Center for Mind and Braan, Universaty of Califoenia, Davis, California 95616, “Escucha de Psicologia, Facaltad de Ciencias Sociales, Pootificia Universadad
Catdlica de Chile, Saatiago, Chile, *Departamento de Peiquiatria, Facultad de Medicaina, Pontifica Universidad Casdlica de Chile, Santiago, Chile,

and ‘Centro Isterdasciplinanio de Neurociencia, Pontificia Universidad Cardhica de (hile, Santzago, Chale

Alpha-band (8 ~12 Hz) EEG activity has been linked to visual attention since the earliest EEG studies. More recent studies using spatial
cuing paradigms have shown that alpha is suppressed over the hemisphere contralateral to a to-be-attended location, suggesting that
alpha serves as a mechanism of preparatory attention. Here, we demonstrate that alpha also plays a role in active target processing. EEG
activity was recorded from a group of bealthy male and female human subjects in two visual search experiments. In addition to alpha
activity, we also assessed the N2pc event-related potential component, a lateralized transient EEG response that has been tightly linked
with the focusing of attention on visual targets. We found that the visual search targets triggered both an N2pc component and a
suppression of alpha-band activity that was greatest over the hemisphere contralateral to the target (which we call “target-dlicited
lateralized alpha suppression™ or TELAS). In Experiment 1, both N2pc and TELAS were observed for targets presented in the lower visual
ficld but were absent for upper-field targets. However, these two lateralized cffects had different time courses and they responded
differently to manipulations of crowding in Experiment 2. These results indicate that lateralized alpha-band activity is involved in active
target processing and is not solely a preparatory mechanism and also that TELAS and N2pc reflect a related but separable neural
mechanism of visuospatial attention.

Bacigalupo, F., & Luck, S. J. (2019). Lateralized suppression of alpha-band EEG activity
as a mechanism of target processing. 7he Journal of Neuroscience, 39, 900-917.



Subjects maintained
fixation centrally and used
covert attention to
perceive the target
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Subjects maintained Task: Find item of
fixation centrally and used ’ . ‘ attended color and report

covert attention to whether it has a gap on

perceive the target the top or the bottom
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Correction
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Usually, we’re mterested in Iookmg at the ERP reIated to the L Bl
stimuli, so the stimulus is time zero in our ERP averages. 1™

Before we make our averages, we have to pull out the single-
trial EEG epochs for each stimulus.

A typical epoch would 200 ms prior to stimulus onsetand
extend for 1000 ms endlng 800 ms after stimulus onset. 1
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The EEG is riding on top of non-neural slow potentials. This voltage offset changes
slowly over time, and it can be huge.

If we didn’t somehow subtract out the offset, our measures of ERP amplitudes would
be incredibly distorted. If we didn’t subtract out this offset, we’d have enormous
unexplained variance, and nothing would ever be statistically significant.
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Baseline Correction Procedure

Goal: Subtract estimate of offset voltage from the waveform
Mean prestimulus voltage is usually a reasonable estimate
Subtract this value from each point in the waveform
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Baseline Correction Procedure

Goal: Subtract estimate of offset voltage from the waveform
Mean prestimulus voltage is usually a reasonable estimate
Subtract this value from each point in the waveform

+20 -

+154

“Noise B“Ii@f;

+5 -

u 1 1 1 1
200 AT 0 400 600 800

Entire waveform shifted down (negative)

_ _ _ _ _ because of positive noise blip
Noise or overlap in the baseline period will be propagated to the entire waveform
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Overlap hext

Stimulus

The last part of the waveform from e cdrrent stimulus will be present during the
prestimulus baseline period of the next stimulus.

When we do our baseline correction, the overlap distorts our estimate of the offset, and
we end up massively overcorrecting. The whole waveform gets shifted downward.



Overlap

Can validly
compare these
two amplitudes
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Non-Differential
Overlap

Overlap is not usually a problem unless it differs between conditions



Overlap
Apparent difference in P3

amplitude is an artifact of

the prestimulus difference
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Differential
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Overlap

+10 -
Differential
Overlap

+5 -

-200 0

If you see a steeper tilt during the baseline period in one condition than in
another, you should be concerned.

And if you see effects that begin right around time zero and last for
hundreds of milliseconds, you should be concerned.



